Particulate organic acids and overall water-soluble aerosol composition measurements from the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS)
نویسندگان
چکیده
[1] The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter participated in the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) mission during August–September 2006. A particle-into-liquid sampler (PILS) coupled to ion chromatography was used to characterize the water-soluble ion composition of aerosol and cloud droplet residual particles (976 5-min PM1.0 samples in total). Sulfate and ammonium dominated the water-soluble mass (NH4 + + SO4 2 = 84 ± 14%), while organic acids contributed 3.4 ± 3.7%. The average NH4 :SO4 2 molar ratio was 1.77 ± 0.85. Particulate concentrations of organic acids increased with decreasing carbon number from C9 to C2. Organic acids were most abundant above cloud, presumably as a result of aqueous phase chemistry in cloud droplets, followed by subsequent droplet evaporation above cloud tops; the main product of this chemistry was oxalic acid. The evolution of organic acids with increasing altitude in cloud provides evidence for the multistep nature of oxalic acid production; predictions from a cloud parcel model are consistent with the observed oxalate:glyoxylate ratio as a function of altitude in GoMACCS cumuli. Suppressed organic acid formation was observed in clouds with relatively acidic droplets, as determined by high particulate nitrate concentrations (presumably high HNO3 levels too) and lower liquid water content, as compared to other cloud fields probed. In the Houston Ship Channel region, an area with significant volatile organic compound emissions, oxalate, acetate, formate, benzoate, and pyruvate, in decreasing order, were the most abundant organic acids. Photo-oxidation of m-xylene in laboratory chamber experiments leads to a particulate organic acid product distribution consistent with the Ship Channel area observations.
منابع مشابه
On the source of organic acid aerosol layers above clouds.
During the July 2005 Marine Stratus/Stratocumulus Experiment (MASE) and the August-September 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter probed aerosols and cumulus clouds in the eastern Pacific Ocean off the coast of northern California and in southeastern Texas, respectively. An...
متن کاملStatistical comparison of properties of simulated and observed cumulus clouds in the vicinity of Houston during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS)
[1] We present statistical comparisons of properties of clouds generated by Large Eddy Simulations (LES) with aircraft observations of nonprecipitating, warm cumulus clouds made in the vicinity of Houston, TX during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), carried out in the summer of 2006. Aircraft data were sampled with the Center for Interdisciplinary Remotely ...
متن کاملA study on the composition of size-fractionated suspended particulate matter in shallow coastal waters of Chabahar Bay
Abstract In the present study, sampling and analysis of size-fractionated suspended particulate matter (SPM) in coastal waters of Chabahar Bay have been done for the first time. Sampling has been conducted on December 25 of 2018 from 5 stations in different locations of the Bay in order to evaluate the effects of natural and human activities on SPM mass and composition. With an overall average...
متن کاملAerosol-cloud relationships in continental shallow cumulus
[1] Aerosol-cloud relationships are derived from 14 warm continental cumuli cases sampled during the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. Cloud droplet number concentration is clearly proportional to the subcloud accumulation mode aerosol number concentration. A...
متن کاملInfluence of aerosol chemical composition on N2O5 uptake: airborne regional measurements in northwestern Europe
Aerosol chemical composition was found to influence nighttime atmospheric chemistry during a series of airborne measurements in northwestern Europe in summer conditions, which has implications for regional air quality and climate. The uptake of dinitrogen pentoxide, γ (N2O5), to particle surfaces was found to be modulated by the amount of water content and ammonium nitrate present in the aeroso...
متن کامل